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[1] An analysis of the climate of precipitation extremes as simulated by six European
regional climate models (RCMs) is undertaken in order to describe/quantify future
changes and to examine/interpret differences between models. Each model has adopted
boundary conditions from the same ensemble of global climate model integrations for
present (1961-1990) and future (2071-2100) climate under the Intergovernmental Panel
on Climate Change A2 emission scenario. The main diagnostics are multiyear return
values of daily precipitation totals estimated from extreme value analysis. An evaluation
of the RCMs against observations in the Alpine region shows that model biases for
extremes are comparable to or even smaller than those for wet day intensity and mean
precipitation. In winter, precipitation extremes tend to increase north of about 45°N, while
there is an insignificant change or a decrease to the south. In northern Europe the 20-year
return value of future climate corresponds to the 40- to 100-year return value of present
climate. There is a good agreement between the RCMs, and the simulated change is
similar to a scaling of present-day extremes by the change in average events. In contrast,
there are large model differences in summer when RCM formulation contributes
significantly to scenario uncertainty. The model differences are well explained by
differences in the precipitation frequency and intensity process, but in all models, extremes
increase more or decrease less than would be expected from the scaling of present-day

extremes. There is evidence for a component of the change that affects extremes
specifically and is consistent between models despite the large variation in the total

response.
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1. Introduction

[2] An accumulating body of evidence suggests that the
increase of atmospheric greenhouse gas concentrations
could increase the frequency of heavy precipitation in
many regions of the globe: Physical considerations imply
that the sensitivity of heavy precipitation may be deter-
mined primarily by the change in the atmospheric moisture
transport capacity (governed by the Clausius-Clapeyron
relation) rather than the change in mean precipitation and
evaporation [Trenberth, 1999; Allen and Ingram, 2002;
Trenberth et al., 2003]. The moistening of the atmosphere
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could result in progressively larger frequency increases at
high precipitation intensities, and increases could even
occur in regions where mean precipitation decreases [Katz
and Acero, 1994; Frei et al., 1998; Groisman et al., 1999].
Consistent with these conceptual considerations, recent
global warming experiments with general circulation
models (GCMs) show an increase of precipitation extremes
over many areas of the globe [e.g., Kharin and Zwiers,
2000; Palmer and Rdisdnen, 2002; Semenov and Bengtsson,
2002; Voss et al., 2002; Kiktev et al., 2003, 2004; Watterson
and Dix, 2003; Wehner, 2004]. The details of the distribution
and the magnitude of the change vary between models, but
there is similarity in that increases are found predominantly
over land areas of the middle and high latitudes.

[3] Results from GCMs may be considered with some
reservation as regards the subcontinental pattern and mag-
nitude of the change. The coarse grid spacing poses limi-
tations to the explicit simulation of mesoscale processes and
to the representation of topography and land-sea distribu-
tion. Regional climate models (RCMs) are promising tools,
which, when nested into a GCM, permit the derivation of
GCM-consistent climate change scenarios with more re-
gional detail and a more trustworthy representation of
processes active during heavy precipitation. Experiments
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with the perfect model approach have demonstrated the
ability of the one-way nesting technique in reproducing
the fine-scale features of atmospheric fields in areas where
surface forcing is strong [e.g., Denis et al., 2002; De Elia
and Laprise, 2003]. Also, RCMs were found to reproduce
the main characteristics of the larger-scale hydroclimate
during episodes of heavy precipitation [Anderson et al.,
2003] and prominent patterns of precipitation extremes
on scales not resolved by a current GCM [Frei et al., 2003;
Fowler et al., 2005]. However, biases are quite large in
some cases. Note that there are alternative approaches to
climate change downscaling using statistical techniques
[e.g., Wilby et al., 1998; C. M. Goodess et al., An inter-
comparison of statistical downscaling methods for Europe
and European regions—Assessing their performance with
respect to extreme temperature and precipitation events,
submitted to Climatic Change, 2005], but we focus on
dynamical downscaling, i.e., RCMs, in this study.

[4] For the European continent, a number of recent
climate change simulations with regional climate models
have been analyzed for future changes in precipitation
extremes. One group of studies considers direct empirical
diagnostics such as quantiles or seasonal/annual extremes;
for example, Durman et al. [2001] found that the fraction
of precipitation exceeding the 99th percentile of daily
values increases in their RCM by several tens of percent
by the end of the 21st century under a 1% per year CO,
increase. In a different RCM, Christensen and Christensen
[2003, 2004] found an increase of very high quantiles even
in summer and for regions in central Europe, where mean
precipitation decreases. Pal et al. [2004] found similar
results in their RCM. Rdisdnen et al. [2004] documented
an increase in annual precipitation extremes for two RCM
experiments with different GCMs, but details of the geo-
graphical pattern of the change were different between the
two experiments.

[5] Another group of studies has adopted techniques of
extreme value analysis to estimate the change in events
with return periods of several years. Using data from two
RCMs, Booij [2002] estimated a 25-60% increase
(depending on model) in the 20-year return period 1-day
rainfall in an area of northwestern continental Europe by
the time of CO, doubling. For the area of the United
Kingdom, several applications of extreme value statistics
have been undertaken on the basis of the Hadley Centre
climate model chain [Jones and Reid, 2001; Huntingford et
al., 2003]. In a recent version of this RCM, Ekstrom et al.
[2005] found a 10% increase of l-day precipitation
extremes with return periods of 10—50 years across the
United Kingdom and more regionally variable changes for
10-day precipitation extremes. Finally, Semmler and Jacob
[2004] reported, with their RCM, an increase of annual
rainfall extremes over most parts of the European continent
with particularly large absolute changes over the Baltic Sea
area and the central Mediterranean.

[6] In all these published RCM results, there is a common
tendency for increases in European precipitation extremes,
but there appears to be considerable intermodel variation in
the distribution and magnitude of the change. A quantitative
comparison of the published results is, however, difficult
because of differences in the diagnostics and the techniques
with which they were estimated. In principle, intermodel
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differences in scenarios can arise from the use of different
emission scenarios and GCMs and from differences in RCM
formulation and technical specifications. The role of these
factors for scenarios of mean surface climate is examined by
Déqué et al. [2005].

[7] The purpose of this study is to compare scenarios of
European precipitation extremes for the late 21st century
between six different RCMs using consistent diagnostics.
The idea is to isolate the contribution to scenario uncer-
tainty, which is due to differences in the formulation of the
regional models. Accordingly, all the RCM simulations
being analyzed here are based on the same emission
scenario (SRES A2 [Nakicenovic et al., 2000]), are nested
into the same global climate model (HadAM3H [Pope et al.,
2000]), and are operated at comparable grid spacing.
Clearly, our analysis satisfies some obvious interest in
scenarios of precipitation extremes; however, its results
are also relevant for the design of multimodel ensembles,
when it comes to estimating the full range of scenario
uncertainty. High sensitivity of scenarios to RCM formula-
tion may suggest the consideration of several different
RCMs nested in the same GCM, whereas a low sensitivity
may suggest that computational resources are used more
efficiently in sampling GCM formulation, i.e., by nesting
RCMs into several different GCMs.

[8] The diagnostics of primary focus in this analysis are
extremes of rainfall with return periods between 5 and
50 years. Their estimation is based on the technique of
extreme value statistics [see, e.g., Coles, 2001; Katz et al.,
2002] very similar to the studies mentioned above. Here this
method is applied consistently to all the RCMs and results
are compared quantitatively for specific regions. In addition,
we also consider more direct diagnostics of average or
intense events, which allows us to describe a wider range
of the frequency distribution and to employ a simple scaling
concept to interpret changes for rare extremes. All our
analyses are carried out seasonally stratified in order to
identify seasonal variations in scenarios and uncertainties
[see also Wehner, 2004].

[s] One part of this study is also devoted to an evalu-
ation of the RCMs with respect to their representation of
precipitation extremes. Unfortunately, there is currently no
comprehensive high-resolution data set that would allow an
evaluation for the whole European continent. In this study
we consider the European Alps as a test ground. This
region has at its disposal a very dense rain gauge network
from which an accurate observational data set could be
created that is compatible with the grid spacing of the
models. Although the Alps cover only a limited part of the
model’s domain (typically 25 x 15 grid points), and results
may not be extrapolated to other regions, this region is
particularly interesting for assessing downscaling abilities
because of its complex topography. Also, the evaluation in
the Alps complements previous evaluation studies that
have focused on more northern parts of Europe [Booij,
2002; Huntingford et al., 2003; Semmler and Jacob, 2004;
Fowler et al., 2005].

[10] The RCM integrations considered in this study were
derived as part of a larger multimodel ensemble in the frame
of the European project PRUDENCE ([Christensen et al.,
2006]. The present analysis forms part of an even broader
intercomparison of downscaling methods for extremes,
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Table 1. Diagnostics of Daily Precipitation Used in This Study

Abbreviation Definition Unit
mea climatological mean precipitation mm/d
fre wet day frequency, days with fraction
precipitation >1 mm

int wet day intensity, mean precipitation mm/d
on days with >1 mm

gxXx* empirical XX% quantile of precipitation mm/d

during wet days
x1d.TT® return value of 1-day precipitation intensity mm/d
with a return period of TT
x5d.TT? return value of 5-day precipitation intensity mm/d

with a return period of TT

XX = 40%, 60%, 80%, 90%, 95%.
°TT =2, 5, 10, 20, 50, 100 years.

involving statistical and dynamical methods, in the frame of
the European project STARDEX [Goodess, 2003].

[11] The outline of this paper is as follows. Section 2
describes the statistical procedures used in the analysis of
the regional climate models, which are introduced in
section 3. Results of the model evaluation in the Alpine
region are discussed in section 4. The scenarios of
precipitation extremes are presented and interpreted in
section 5. Finally, section 6 summarizes the results and
draws conclusions.

2. Statistical Analysis

[12] The statistical analysis of this study operates on data
sets of 24-hour precipitation totals, simulated by six regional
climate models (RCMs) and their parent GCM. Each model
was run for a time slice of present climate (1961—1990, also
referred to as CTRL) and future climate (2071-2100, SCEN).
Details of the experiments and models are described in section
3. For three of the RCMs an ensemble of three integrations is
available for both time slices, and these are dealt with simply
as a 90-year sample of the corresponding time slice. The
ensembles help to reduce estimation errors due to interannual
climate variability. All analyses were conducted directly with
the data on the native model grids.

[13] We consider a range of different diagnostics with the
aim of sampling the frequency distribution of precipitation
from moderate to extreme intensities (Table 1). Climatolog-
ical mean precipitation (mea), wet day frequency (fre), and
mean wet day intensity (int) are basic diagnostics of the
precipitation occurrence and intensity process. A threshold
of 1 mm/d is used to discriminate between wet and dry days.
Other choices of the threshold (0.1, 0.5 mm) were found to
lead to very similar results. The basic diagnostics will be used
primarily for comparison and interpretation of the results for
extremes. In addition, several precipitation quantiles (qXX)
are considered (Table 1), describing the range from moderate
to intense precipitation. Calculated for wet days only, these
quantiles describe the precipitation intensity distribution,
independently from the wet day frequency. Basic diagnostics
and quantiles were calculated using a modified version of the
STARDEX diagnostic software tool (user information avail-
able at http://www.cru.uea.ac.uk/projects/stardex/deis/Diag-
nostic_tool.pdf) [Schmidli and Frei, 2005].

[14] The diagnostics of primary focus in this study are
return values of precipitation intensities with an average
recurrence of 5, 10, 20, and 50 years (Table 1). Essentially
these are quantiles of the far tail of the frequency distribu-
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tion. The return value for a return period of 7 years is
defined as the precipitation intensity that is exceeded by an
annual or seasonal extreme with a probability of 1/7. These
diagnostics are examined for 1-day (x1d) and 5-day (x5d)
precipitation sums, characteristic, respectively, for short-
term heavy precipitation, possibly of a convective nature,
and extended heavy rainfall periods, related to synoptic
disturbances or persistent flow conditions. In Europe,
impacts from heavy precipitation are mostly due to short-
period rainfalls in summer and multiday episodes in winter,
and this is why we focus on the results for 1-day and 5-day
extremes in summer and winter respectively.

[15] As in several previous studies concerned with
extremes in climate models [e.g., Zwiers and Kharin,
1998; Arora and Boer, 2001; Voss et al., 2002] we employ
the technique of extreme value analysis [see Fisher and
Tippett, 1928; Gnedenko, 1943; Gumbel, 1958]. Return
values of precipitation extremes are estimated by the block
maximum technique, where a generalized extreme value
(GEV) distribution is fitted to seasonal precipitation maxi-
ma and return values are calculated from that distribution.
The GEV is a 3-parameter distribution family with a
location, scale and shape parameter. Positive (negative)
shapes describe situations where extremes have an upper
(lower) bound. (Note that we use the sign convention for
shape as given by Zwiers and Kharin [1998], which is
opposite to that of Coles [2001]). The theoretical back-
ground and the various techniques of extreme value analysis
are explained in detail, for example, by Coles [2001] and
applications in climatology and hydrology are discussed, for
example, by Palutikof et al. [1999] and Katz et al. [2002].
Our specific application of the block maximum approach is
explained in sections 2.1, 2.2, and 2.3.

2.1. Data Selection

[16] Maxima of 1-day and 5-day precipitation intensities
are extracted from each season of the 30 (90) years in the two
time slices. The analysis is carried out independently for each
model grid point and for each season of the year (winter, DJF;
spring, MAM; summer, JJA; autumn, SON). For some areas
in the Mediterranean region the regional models have simu-
lated extended dry periods in summer, so that precipitation
maxima were found to be zero or small in some years. Such
“maxima’ cannot be considered as being taken from a large
sample of data of the precipitation process, which is a
theoretical presumption of extreme value analysis. Return
values estimated from such samples must be considered
unreliable. Therefore an extreme value analysis was only
performed for grid points where at least 15 seasonal maxima
larger than the intensity of 5 mm/d were simulated in a time
slice. Grid points not meeting this criterion are found mostly
in southern Europe in summer and particularly in the SCEN
integrations, where wet day frequency has substantially
decreased. Grid points for which extreme value analysis
was not feasible will be masked out in our result plots.

2.2. Estimation

[17] Estimates of the GEV distribution parameters are
calculated by the method of maximum likelihood. However,
in this study we use a modified form of the classical GEV
likelihood function [see, e.g., Coles, 2001], which includes
a Bayesian prior distribution for the GEV shape parameter.
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Gumbel diagrams (return value in mm/d as a function of return period 7 in years) for two grid

point samples of daily precipitation extremes, simulated by one of the regional climate models (RCMs)
(CHRM, CTRL, winter). The two cases are from nearby grid points in northern France. Sample extremes
(dots) and fitted generalized extreme value (GEV) distributions (including pertinent maximum likelihood
95% confidence bands) (solid curves) are depicted. Maximum likelihood estimates of the GEV
distribution are displayed for the standard likelihood function (shaded curve) and for the likelihood

function with the geophysical prior (solid curve).

This modification was proposed by Martins and Stedinger
[2000] to prevent the estimation of absurd values of the
shape parameter often observed with conventional maxi-
mum likelihood estimation from small samples (between 15
to 100 [Hosking, 1985; Martins and Stedinger, 2000]). Note
that alternative robust methods are L moments and regional
frequency analysis [Hosking, 1985; Hosking and Wallis,
1993].

[18] Inourapplication (with sample sizes of 30 or 90), quite
many incidents of unrealistic shape estimates were found
when using the standard likelihood function. Two selected
cases from nearby grid points in northern France are illus-
trated in Figure 1. In the first case (Figure 1a) the standard
method estimates a very heavy tail (shape value is —0.52)
because of an outlier value in the sample. In the second case
(Figure 1b), the GEV fit levels off and suggests an upper
bound near 35 mm/d (shape value is +0.55). Both of these
standard estimates appear unrealistic and are not supported by
the distributions estimated at adjacent grid points.

[19] The purpose of the geophysical prior distribution is
to reduce the likelihood of estimating shape values that are
unrealistic in geophysical applications. Figure 2 displays the
prior distribution that Martins and Stedinger [2000] pro-
posed for hydrological applications and which is used
throughout this study. The distribution constrains values
of the shape to essentially the range (—0.3, +0.15) and it
totally prevents estimates outside (—0.5, +0.5). The prior
distribution is biased toward negative shapes. Maximum
density is obtained for a shape of —0.1. This is justified for
hydrological applications where lower bounds of extremes
and hence heavier tails than the Gumbel distribution are
very common. Using sample sizes of 25 to 100, Martins
and Stedinger [2000] show that for GEVs with a negative
shape the modified likelihood function leads to much more
accurate quantile estimates (in terms of root mean square

error) compared to the standard likelihood, the moment, and
the L moment [Hosking, 1990, 1992] estimators. Moreover,
in many cases the bias is smaller or at least comparable to
that of other estimators.

[20] In Figure 1, GEV distributions estimated from the
modified likelihood function are also depicted. The result-
ing distributions seem physically more meaningful (shape
parameters are —0.27 for case a and 0.12 for case b). The
modification influences, in particular, quantiles at return
periods of 10 years and more. The stabilizing effect of the

probability density
1.5 25 3.0

1.0

0.5

0.0

-04 -02 0.0 0.2 0.4
shape k

Figure 2. Probability density of the prior distribution for
the GEV shape parameter. The prior distribution is used in
this study to improve the robustness of maximum likelihood
estimates of GEV parameters and quantiles. Adapted from
Martins and Stedinger [2000].
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Figure 3. Distribution of the GEV shape parameter estimated from grid point extremes (a) without and
(b) with geophysical prior. Results are from a 30-year time slice of one of the RCMs (CHRM, CTRL).

geophysical prior is also demonstrated in Figure 3, showing
the spatial distribution of the shape parameter for one of the
models’ control integrations. When estimated with the
standard likelihood function (Figure 3a), the shape shows
an irregular pattern, with many anomalous values even over
the ocean. More than 5% of the grid points exhibit shape
values outside the range (—0.4, +0.4) in this example. In
contrast, estimates with the modified likelihood function
(Figure 3b) are much less variable and smoother in distri-
bution. Note also, that in case of the standard estimation,
negative shape values were estimated for more than 70% of
the grid points and that the median across Europe is —0.09.
This is close to the density maximum of the prior distribu-
tion and it justifies the choice of a prior distribution that is
shifted to negative values.

2.3. Confidence Intervals and Statistical Tests

[21] In this study we use two different methods for the
assessment of uncertainties. On a grid point basis, like-
lihood confidence intervals for return values were calcu-
lated directly from the observed information matrix of the
modified likelihood function [see, e.g., Coles, 2001,
section 3.3.3]. A confidence interval for the difference
in return values between the CTRL and SCEN sample is
then derived from the standard errors in each sample,
assuming normal distribution of errors. This provides a
statistical test for the change. Note that the asymptotic
properties of likelihood confidence intervals (symmetry
and normal errors) may not be satisfied with the small
samples considered. We therefore view the results only as
an approximate indication. Likelihood confidence is used
for mapping the statistical significance in maps of the
change later in section 5.

[22] A more accurate, bootstrap based, estimation of
confidence intervals is used for spatial averages of return
values across selected subdomains. The subdomains used
are depicted in Figure 4. Bootstrap samples of domain mean

return values were generated by resampling of years (non-
parametric bootstrap). In order to preserve the spatial
correlation of errors, all grid points within the subdomain
are sampled from the same years [see, e.g., Wilks, 1997].
GEVs are then estimated for each grid point sample and
return values averaged over the subdomain. 50 bootstrap
samples were generated for each time slice. Confidence
intervals for the relative change in return values between
CTRL and SCEN are then obtained by resampling between
the pairs of bootstrap samples.

3. Models and Experiment

[23] The RCM integrations analyzed in this study were
conducted by nesting into the atmosphere-only GCM
(HADAM3H) of the Hadley Centre at the UK. Met
Office. One RCM is also nested into HADAMS3P, a more
recent version of the same GCM (see later). HADAM3H
was derived from the coupled atmosphere-ocean model
HadCM3 [Gordon et al., 2000; Johns et al., 2003] and is
described by Pope et al. [2000]. The HADAM3H inte-
grations, from which the forcing fields for the RCMs
were taken, have a resolution of about 150 km in
midlatitudes and they extend over the two time slices
1961-1990 (CTRL) and 2071-2100 (SCEN). For CTRL,
HADAM3H was forced by observed sea surface condi-
tions of the same period by prescribing the evolution of
sea surface temperature and sea ice distribution. For
SCEN, sea surface conditions were constructed from
observations and anomalies from a transient integration
of HADCM3 using the IPCC SRES A2 emission scenario
[Nakicenovic et al., 2000]. With this scenario HADAM3H
has simulated a global mean surface temperature increase
of 3.18 K between CTRL and SCEN (D. Rowell,
personal communication, 2004). This is in the upper half
of the warming range predicted by the IPCC [Cubasch et
al., 2001] and corresponds approximately to the 55%
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(@)

Figure 4. Subdomains used in the analysis of this study:
(a) Northern and southern Alps and (b) southern Scandina-
via, central Europe, and Iberia. Subdomains vary slightly
between models because of different grids and land-sea
masks. Figure 4 is for model SMHI.

quantile of the probabilistic prediction of Wigley and
Raper [2001] for the warming between 1990 and 2100.

[24] Three integrations were carried out with HADAM3H
(and also with HADAM3P) for both time slices, starting
from different initial conditions. Two of the considered
RCMs were integrated from all six members. The remaining
four RCMs ran for only one (but the same) pair of ensemble
members. Consideration of ensemble integrations is partic-
ularly valuable in the analysis of extremes, because quan-
tiles can be estimated from a larger sample and uncertainty
arising from interannual variations is reduced.

[25] The RCMs considered in this study are operated at a
grid spacing of about 50 km, with a comparable domain,
covering the European continent from the Mediterranean to
Scandinavia and from Iceland to the Black Sea. Domains
for some of the models are depicted by Frei et al. [2003].
All six RCMs are state-of-the-art limited-area climate mod-
els with one-way nesting over a lateral boundary zone. The
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boundary zone is excluded from all analyses and displays in
this paper. Table 2 gives a list of the RCMs with acronyms,
basic characteristics and references to more technical
descriptions. It may be of interest to mention that there
are relationships between some of the models. CHRM and
REMO share the same dynamical core. CHRM and GKSS
have very similar physical parameterizations. The same is
the case for HIRHAM and REMO.

[26] For the regional model of the Hadley Centre, two
model versions (HADRM3H and HADRM3P) will be
considered in our analysis. The more recent model
(HADRM3P) uses a newer version of physical parameter-
izations (mainly with effects on the vertical cloud profile
(R. G. Jones et al., A high resolution atmospheric GCM for
the generation of regional climate scenarios, manuscript in
preparation, 2005)). However, the boundary conditions for
the newer model are taken from the corresponding new
version of the atmospheric GCM (HADAM3P), and hence
the integration with HADRM3P is not strictly in our
common setting. Results of HADRM3P will therefore not
be displayed as extensively as for the other models, but
eventual comparison to its predecessor HADRM3H is
interesting, primarily because it is the new version, which
is used in many current impact studies.

[27] The RCM experiments used in this study form part
of an even larger collection of downscaling experiments,
conducted in the EU project PRUDENCE [Christensen et
al., 2006]. The large effort required with the handling of
daily data sets, with extreme value analysis and resampling
experiments has prevented us from considering all available
experiments. A comparison of scenarios for mean seasonal
surface climate with all PRUDENCE RCMs was, however,
given by Déqué et al. [2005].

4. Evaluation in the Alpine Region

[28] This section presents an evaluation of the climate of
precipitation extremes as simulated by the CTRL integra-
tions of the RCMs. Results are discussed/depicted only for
a selection of the diagnostics considered in this study
(Table 1), but the selection provides a representative picture
of the models’ behavior. The evaluation is conducted for
the European Alps, a 1100 x 700 km? region, encompass-
ing typically 25 x 15 model grid points. The Alps are
located well in the interior of all the model domains,
usually slightly south of the domain centers. This high
mountain area is an ambitious but interesting test ground as
it illustrates the downscaling ability of RCMs. Our focus on
the Alps is because we dispose of a high-density precipi-
tation data set for this region, which provides a suitable
observation reference. Unfortunately no similar data set is
currently available for Europe as a whole and it is difficult
to extrapolate the results of this evaluation to other regions.
Also, it should be born in mind that discrepancies of the
RCMs to the observations may also be due to errors in the
driving GCM, and need not necessarily point to errors in
the RCMs themselves.

4.1. Evaluation Data Set

[29] The observational reference for the present study is
very similar to that used in a previous evaluation of
reanalysis-driven RCMs by Frei et al. [2003]. In summary
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it is a gridded precipitation analysis for every day of the
20 years 1971-1990 based on data from the operational
high-resolution rain gauge networks encompassing more
than 6500 station records. The analysis grid has a resolution
comparable to the grid spacing of the RCMs, and the
analysis scheme estimates averages of the rainfall intensity
over grid pixels, ensuring compatibility of the resulting
statistics with the resolution of the models [see, e.g., Osborn
and Hulme, 1997; Frei et al., 2003]. At each grid point, 10—
50 station values contribute to the analysis. Deviating from
the work by Frei et al. [2003], the analysis for this study was
performed with a climatological scaling similar to that used
by Widmann and Bretherton [2000]. This procedure uses a
gridded high-resolution climatology, in our case that of
Schwarb et al. [2001], to derive relative anomalies of
observed daily precipitation totals. The relative anomalies
are gridded, in our case using a variant of the Shepard
algorithm [Shepard, 1984; see also Frei and Schdr, 1998],
and, finally, the fields of relative anomalies are augmented
with the same climatology. The climatological scaling
reduces errors of the analysis emanating from biases in
station distribution, e.g., the underrepresentation of high-
elevation areas, because such biases are explicitly consid-
ered in the derivation of the climatology.

[30] It should be noted that our gridded analysis is
affected by systematic undercatch of the underlying rain
gauge measurements [Neff, 1977; Groisman and Legates,
1994]. In the Alpine region this error ranges from 4% at low
elevations in summer to more than 40% above 1500 m
above sea level in winter [Sevruk, 1985]. In the average over
larger-scale subdomains, such as those in Figure 4a, we
estimate that the gridded analysis underestimates mean
precipitation by about 11% in winter and 6% in summer
[see Frei et al., 2003, Table 1].

[31] The diagnostics of Table 1 for observations were
determined from the daily gridded analysis in the same way
as for the models. Unfortunately, it was not possible to
cover a 30-year period with our analysis as in the models,
because of limited data availability in the 1960s and prob-
lems in data quality in the 1990s. More details about the
data set and analysis technique are given by Frei and Schdr
[1998] and Frei et al. [2003].

4.2. Results

[32] In the Alps the highest frequency of heavy precipi-
tation occurs in autumn. It is therefore natural to have a
special focus on this season first. Figure 5 compares the
distribution of the 5-year return value of 1-day precipita-
tion extremes (x1d.5, see Table 1) between observations
(Figure 5, top right) and models. In autumn, heavy precip-
itation is frequently associated with moist and weakly
stratified airflows from the south, often with embedded
convection. Accordingly, large values of x1d.5 are observed
along the southern rim of the Alps, with a characteristic
mesoscale pattern (note areas exceeding 80 mm/d), reflect-
ing topographic detail of the ridge and the proximity of the
Mediterranean Sea. All RCMs reproduce the general south-
ern rim pattern quite well and several models show features
similar to the observed peaks, although eventually shifted
by a few grid points (e.g., the Massif Central maximum in
CHRM and GKSS). HADRM3H and HADRM3P show
very similar distributions. Both tend to overestimate the
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topographic enhancement at the southern rim but underes-
timate the return values in the foreland (the Po valley).
HIRHAM and SMHI show an overall underestimate and
GKSS tends to overestimate return values.

[33] Comparison of the RCM results to those of their
driving GCM (HADAM3H (Figure 5, top left)) reveals the
benefit from the higher model resolution. Although the
GCM reflects the larger-scale pattern of the observations
reasonably well, the RCMs depict much more realistic
structures in connection with the finer-scale features of the
topography. Note that the mesoscale pattern in x1d.5 is not
trivial (e.g., a simple height dependence) and hence this
evaluation illustrates the downscaling ability of RCMs for
precipitation extremes.

[34] It is interesting to note that despite the rareness of
events considered, the correspondence of the RCM simu-
lated x1d.5 pattern with observations is only slightly lower
than that found in a previous evaluation for the 90%
quantile (event recurrence one month) and for reanalysis-
driven RCMs [Frei et al., 2003]. Indirectly, this attests to
the quality of the GCM (HadAM3H and HadAM3P) in
reproducing, at least in this season, the observed climate of
large-scale flow conditions relevant for precipitation
extremes in the Alps.

[35] In a visual comparison of x1d.5 for winter and spring
(not shown) we found a similar skill of the RCMs to that
found in autumn, but the biases and intermodel differences
were largest in summer. Figure 6 shows the seasonal
variation in some of the precipitation diagnostics averaged
over 2 Alpine subdomains and Table 3 lists numbers of the
model biases for winter and summer (domain definitions are
displayed in Figure 4a). For x1d.5 (Figures 6e and 6f) the
observed interseason and across-ridge variations are reason-
ably reproduced by individual models although there are, in
cases, substantial biases. An exception to this is summer in
the southern Alpine region, where in contrast to observa-
tions all models, except GKSS, simulate smaller values of
x1d.5 than in winter and spring. A similar dry bias was
found for mean precipitation in the southern Alps [see also
Frei et al., 2003], and it is likely related to problems in the
representation of the summertime water and energy cycle in
southern Europe [e.g., Noguer et al., 1998; Hagemann et
al., 2004; Hirschi et al., 2006]. In the other seasons,
however, the biases are more model specific. Both
HADRM3 models and the GKSS tend to overestimate and
CHRM, HIRHAM, SMHI, and REMO tend to underesti-
mate x1d.5. Note that even though the uncertainty in x1d.5
from interannual variations is quite large, most of the model
biases well exceed the 90% confidence ranges, implying
that the depicted model biases are not artifacts of random
errors due to the short observation/simulation periods.

[36] Interestingly, the model biases for the tail of the
distribution (x1d.5) are, in relative terms, comparable to or
smaller than the biases in either wet day intensity or mean
precipitation (Table 3). At least we do not find indications of
systematically larger biases for quantiles of extremes up to a
recurrence of five years compared to more average precip-
itation statistics. It is also worth noting that the intermodel
pattern and seasonal variation of biases is very similar
between int and x1d.5 (Figures 6¢—6f), suggesting that
the model errors in precipitation extremes are primarily
related to deficiencies in the intensity process rather than the
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Figure 5. Five-year return value of 1-day precipitation extreme (x1d.5, mm/d) in autumn (September—
November). Shown are observations (OBS, 1971-1990, top right), the common general circulation
model (GCM) (HADAM3H, 1961-1990, top left), and RCMs (1961—1990). Model results are shown on
original model grids. Thick lines are 700 m above sea level contours of pertinent model topography.

Topography in OBS is more detailed.

occurrence process. Indeed, the bias pattern and seasonal
variation of the wet day frequency (fre, Figures 6a and 6b)
is quite different from int and x1d.5. All models overesti-
mate wet day frequency in the northern Alps from autumn
to spring. This is likely due to errors in the driving GCM,
because no similar bias was seen in reanalysis-driven
integrations with the same RCMs [see Frei et al., 2003].
[37] In summary, the present evaluation demonstrates that
RCMs are capable of reproducing nontrivial mesoscale
patterns of observed precipitation extremes in the Alps, at
least during dynamically active seasons. Nevertheless, there
are model specific biases of up to several tens of percent,
especially in summer; however, the model performance for
rare extremes is not worse than for less extreme quantiles or

for mean wet day intensity. The evaluation did not reveal
previously undiscovered model deficiencies that are specific
to rare extremes. Instead, we expect that future improve-
ments in the modeling of the precipitation intensity process
will also significantly reduce current biases for rare
extremes.

[38] It is unclear to what extent the results in the Alps are
representative for other European regions, but published
evaluations suggest biases of a similar magnitude in some
regions of central and northern Europe, such as the British
Isles [Huntingford et al., 2003; Fowler et al., 2005], the
Meuse catchment in western Europe [Booij, 2002] and
southern Germany [Semmler and Jacob, 2004]. No evalua-
tions of heavy precipitation statistics are so far available for
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